https://d3e1m60ptf1oym.cloudfront.net/4f471e80-fe60-11e2-8710-332599b416d7/MATHS-GABRIELS-HORN-5_xlarge.jpghttps://www.scientific.pictures/-/galleries/maths/-/medias/4f471e80-fe60-11e2-8710-332599b416d7/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/4f471e80-fe60-11e2-8710-332599b416d7/price
MATHS GABRIELS HORN #3
Gabriel's Horn is a solid created by rotating the curve y=1/x around the x axis. The figure is cut off for values lower than x=1. This creates a trumpet-like object (a solid of revolution - arrows in green show the rotation of the curve). The volume is finite, but the surface area is infinite. The solid can be seen tapering off into infinity as the curve (yellow) continues to approach the x axis but never touches it.
Illustration ID: MATHS-GABRIELS-HORN-3
Russell Kightley
Illustration size: 25.0 Mpixels (71.5 MB uncompressed) - 5000x5000 pixels (16.7x16.7 in / 42.3x42.3 cm at 300 ppi)
https://d3e1m60ptf1oym.cloudfront.net/4f315bb8-fe60-11e2-b081-1d5fde65a8de/MATHS-GABRIELS-HORN-3_xlarge.jpghttps://www.scientific.pictures/-/galleries/maths/-/medias/4f315bb8-fe60-11e2-b081-1d5fde65a8de/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/4f315bb8-fe60-11e2-b081-1d5fde65a8de/price
https://d3e1m60ptf1oym.cloudfront.net/4f11163c-fe60-11e2-be3a-3944c1dc5cfe/MATHS-GABRIELS-HORN-2_xlarge.jpghttps://www.scientific.pictures/-/galleries/maths/-/medias/4f11163c-fe60-11e2-be3a-3944c1dc5cfe/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/4f11163c-fe60-11e2-be3a-3944c1dc5cfe/price