
DOUBLE SLIT EXPERIMENT BW1970-01-01T00:00:00+00:004K UHD animation of the principle of Thomas Young's classic double slit experiment. Waves hit a screen with two gaps. The gaps act as new wave sources, creating two sets of circular waves radiating outwards. These two new waves create an interference p...PT33Shttps://d38zjy0x98992m.cloudfront.net/84b07490-dedd-4de0-8a36-97a929b4de3c/Double_Slit_Experiment_4_BW_UHD_265_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/84b07490-dedd-4de0-8a36-97a929b4de3c/Double_Slit_Experiment_4_BW_UHD_265_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/waves/-/medias/84b07490-dedd-4de0-8a36-97a929b4de3c/pricehttps://www.scientific.pictures/-/galleries/waves/-/medias/84b07490-dedd-4de0-8a36-97a929b4de3c/price
Wave superposition
Wave superposition (sum of two waves moving in opposite directions). This animation shows two transverse waves approaching each other from opposite sides of a liquid (blue-green block). The left wave is highlighted by a yellow sine wave, while the right wave by a red sine wave. As the two waves approach each other, so they add together to create a new waveform. When two crests meet they create a larger crest (constructive interference), where two troughs meet, they create a deeper trough. When a crest meets a trough, they cancel out (destructive interference). At exactly halfway through the animation the two waves exactly cancel each other out and the liquid surface is perfectly flat. You can pause the animation and move the slider back and forth to check this out
Animation ID: WAVE-superposition-animation-FHD-Russell-Kightley
Duration: 0:10
copyright Russell Kightley
Animation resolution: 1920x1080 pixels @ 30.0 fps, ~117.5 Mbits/s
Animation keywords: constructive interference, crest, interference, physics, summation, superposition, trough, wave
Wave superposition2020-08-13T01:34:14ZWave superposition (sum of two waves moving in opposite directions). This animation shows two transverse waves approaching each other from opposite sides of a liquid (blue-green block). The left wave is highlighted by a yellow sine wave, while the righ...PT10Shttps://d3e1m60ptf1oym.cloudfront.net/a882e8b1-5be2-46db-a92d-35f112e4ef65/WAVE-superposition-animation-FHD-Russell-Kightley_xlarge.jpghttps://d3e1m60ptf1oym.cloudfront.net/a882e8b1-5be2-46db-a92d-35f112e4ef65/WAVE-superposition-animation-FHD-Russell-Kightley_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/waves/-/medias/a882e8b1-5be2-46db-a92d-35f112e4ef65/pricehttps://www.scientific.pictures/-/galleries/waves/-/medias/a882e8b1-5be2-46db-a92d-35f112e4ef65/price

Harmonics1970-01-01T00:00:00+00:00Animation of harmonics: illustrating how an oscillator (such as a guitar string) can vibrate at different frequencies. The lowest frequency (in red at the bottom) is called the fundamental frequency. Increasingly higher harmonics are seen receding into...PT2Shttps://d3e1m60ptf1oym.cloudfront.net/cbece698-01ec-4121-95e1-337f7785b531/WAVE-Harmonics-box-FHD-Russell-Kightley_xlarge.jpghttps://d3e1m60ptf1oym.cloudfront.net/cbece698-01ec-4121-95e1-337f7785b531/WAVE-Harmonics-box-FHD-Russell-Kightley_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/waves/-/medias/cbece698-01ec-4121-95e1-337f7785b531/pricehttps://www.scientific.pictures/-/galleries/waves/-/medias/cbece698-01ec-4121-95e1-337f7785b531/price