Additive Colour Mixing1970-01-01T00:00:00+00:00Red, Green, and Blue lights illuminate a screen. Each source emits pure red, green, or blue light (i.e. they are the additive primary colours). As the light beams converge and the colours overlap, so they illustrate additive mixing, yielding the additi...PT30Shttps://d38zjy0x98992m.cloudfront.net/27f748aa-3d2e-456c-b71c-ce1c079560f5/COLOUR_MIXING_ADDITIVE_UHD_265_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/27f748aa-3d2e-456c-b71c-ce1c079560f5/COLOUR_MIXING_ADDITIVE_UHD_265_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/optics/-/medias/27f748aa-3d2e-456c-b71c-ce1c079560f5/pricehttps://www.scientific.pictures/-/galleries/optics/-/medias/27f748aa-3d2e-456c-b71c-ce1c079560f5/price
Subtractive Colour Mixing (inks) CMYK
Subtractive colour mixing: printing inks (cyan, magenta, and yellow) are shown pouring from cans onto a sheet of paper. The filtering effect of each one of these inks creates all the colours necessary for colour printing. In real four colour printing the inks are applied as screens (tiny dots that vary in size to carry the image information). Black ink is also used to enhance contrast and give an outline to the colours.
CYAN subtracts RED passes BLUE & GREEN
MAGENTA subtracts GREEN passes RED & BLUE
YELLOW subtracts BLUE passes RED & GREEN
Animation ID: COLOUR_MIXING_SUBTRACTIVE_INKS_UHD_265
Duration: 00:28
copyright Russell Kightley
Animation resolution: 3840x2160 pixels @ 30.0 fps, ~3.7 Mbits/s
Subtractive Colour Mixing (inks) CMYK2020-08-12T07:43:37ZSubtractive colour mixing: printing inks (cyan, magenta, and yellow) are shown pouring from cans onto a sheet of paper. The filtering effect of each one of these inks creates all the colours necessary for colour printing. In real four colour printing t...PT28Shttps://d38zjy0x98992m.cloudfront.net/0d774a89-120e-4f0d-8c71-f15fdc7382d3/COLOUR_MIXING_SUBTRACTIVE_INKS_UHD_265_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/0d774a89-120e-4f0d-8c71-f15fdc7382d3/COLOUR_MIXING_SUBTRACTIVE_INKS_UHD_265_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/optics/-/medias/0d774a89-120e-4f0d-8c71-f15fdc7382d3/pricehttps://www.scientific.pictures/-/galleries/optics/-/medias/0d774a89-120e-4f0d-8c71-f15fdc7382d3/price
Dispersion of Light by a Prism1970-01-01T00:00:00+00:00Simulation of Dispersion of Light by a Prism. The refractive index varies for different wavelengths of light. Blue light is refracted more than red light. This causes the different coloured light beams hitting the prism to emerge at slightly different ...PT2Shttps://d3e1m60ptf1oym.cloudfront.net/1e1506ea-69e9-49ed-aeea-4520f0d10361/PRISM-spectrum-FHD-Russell-Kightley_xlarge.jpghttps://d3e1m60ptf1oym.cloudfront.net/1e1506ea-69e9-49ed-aeea-4520f0d10361/PRISM-spectrum-FHD-Russell-Kightley_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/optics/-/medias/1e1506ea-69e9-49ed-aeea-4520f0d10361/pricehttps://www.scientific.pictures/-/galleries/optics/-/medias/1e1506ea-69e9-49ed-aeea-4520f0d10361/price