Surface Area of a Sphere 1970-01-01T00:00:00+00:00The surface area of a sphere is opened up to illustrate how the formula surface area = 4 π r2 can be understood. The animation starts with a sphere (orange) with its equator shown in yellow. Latitudes north and south are shown as horizontal red rings. ...PT32Shttps://d3e1m60ptf1oym.cloudfront.net/8159489a-a5f1-4dfc-bc3d-1d78f26e50d1/Sphere-Area_RK_53_xlarge.jpghttps://d3e1m60ptf1oym.cloudfront.net/8159489a-a5f1-4dfc-bc3d-1d78f26e50d1/Sphere-Area_RK_53_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/maths/-/medias/8159489a-a5f1-4dfc-bc3d-1d78f26e50d1/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/8159489a-a5f1-4dfc-bc3d-1d78f26e50d1/price
Surface area of a sphere opened up
The surface area of a sphere is opened up to illustrate how the formula surface area = 4 π r2 can be understood. The animation starts with a lined sphere. The upper and lower hemisphere skins then open out to form the sphere’s enclosing cylinder. This cylinder unwraps to demonstrate how its circumference (2πr) and its height (2r) combine to give 4πr2.
Animation ID: SPHERE_Unwrapping_UHD
Duration: 00:10
copyright Russell Kightley
Animation resolution: 3840x2160 pixels @ 30.0 fps, ~33.6 Mbits/s
Surface area of a sphere opened up2020-08-12T08:25:57ZThe surface area of a sphere is opened up to illustrate how the formula surface area = 4 π r2 can be understood. The animation starts with a lined sphere. The upper and lower hemisphere skins then open out to form the sphere’s enclosing cylinder. This ...PT10Shttps://d38zjy0x98992m.cloudfront.net/2799285c-3d45-42f1-a936-bf2f22d876bb/SPHERE_Unwrapping_UHD_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/2799285c-3d45-42f1-a936-bf2f22d876bb/SPHERE_Unwrapping_UHD_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/maths/-/medias/2799285c-3d45-42f1-a936-bf2f22d876bb/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/2799285c-3d45-42f1-a936-bf2f22d876bb/price
Solids of revolution #51970-01-01T00:00:00+00:00Solids of revolution #5. This animation starts with a curve (y=fx) that goes above and below the X-axis. The positive and negative areas bounded by the curve are then limited by two boundaries to create two areas (red). This region then rotates about t...PT36Shttps://d38zjy0x98992m.cloudfront.net/fc79b69e-c8f0-440a-bffa-86103a9d947b/SOLIDS_of_REVOLUTION_5_UHD_265_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/fc79b69e-c8f0-440a-bffa-86103a9d947b/SOLIDS_of_REVOLUTION_5_UHD_265_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/maths/-/medias/fc79b69e-c8f0-440a-bffa-86103a9d947b/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/fc79b69e-c8f0-440a-bffa-86103a9d947b/price