Surface area of a sphere opened up1970-01-01T00:00:00+00:00The surface area of a sphere is opened up to illustrate how the formula surface area = 4 π r2 can be understood. The animation starts with a lined sphere. The upper and lower hemisphere skins then open out to form the sphere’s enclosing cylinder. This ...PT10Shttps://d38zjy0x98992m.cloudfront.net/2799285c-3d45-42f1-a936-bf2f22d876bb/SPHERE_Unwrapping_UHD_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/2799285c-3d45-42f1-a936-bf2f22d876bb/SPHERE_Unwrapping_UHD_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/maths/-/medias/2799285c-3d45-42f1-a936-bf2f22d876bb/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/2799285c-3d45-42f1-a936-bf2f22d876bb/price
Solids of revolution #5
Solids of revolution #5. This animation starts with a curve (y=fx) that goes above and below the X-axis. The positive and negative areas bounded by the curve are then limited by two boundaries to create two areas (red). This region then rotates about the X-axis to create a solid of revolution. Note that even though the curve becomes negative it still produces a solid figure.
Solids of revolution #52020-08-12T08:25:57ZSolids of revolution #5. This animation starts with a curve (y=fx) that goes above and below the X-axis. The positive and negative areas bounded by the curve are then limited by two boundaries to create two areas (red). This region then rotates about t...PT36Shttps://d38zjy0x98992m.cloudfront.net/fc79b69e-c8f0-440a-bffa-86103a9d947b/SOLIDS_of_REVOLUTION_5_UHD_265_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/fc79b69e-c8f0-440a-bffa-86103a9d947b/SOLIDS_of_REVOLUTION_5_UHD_265_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/maths/-/medias/fc79b69e-c8f0-440a-bffa-86103a9d947b/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/fc79b69e-c8f0-440a-bffa-86103a9d947b/price
Solids of revolution #3.1970-01-01T00:00:00+00:00An area (red) bounded by two curves (purple and green) and two lines (functions in bright blue top, and bright green bottom) is shown rotating about the X axis to create a solid of revolution.PT32Shttps://d38zjy0x98992m.cloudfront.net/7343da7d-680e-4e41-b6db-343cad9d01ff/SOLIDS_of_REVOLUTION_3_UHD_265_xlarge.jpghttps://d38zjy0x98992m.cloudfront.net/7343da7d-680e-4e41-b6db-343cad9d01ff/SOLIDS_of_REVOLUTION_3_UHD_265_mp4_hd_video.mp4https://www.scientific.pictures/-/galleries/maths/-/medias/7343da7d-680e-4e41-b6db-343cad9d01ff/pricehttps://www.scientific.pictures/-/galleries/maths/-/medias/7343da7d-680e-4e41-b6db-343cad9d01ff/price